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Mean flow in round bubble plumes 
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Previous experimental studies are reviewed and those whose data are deemed reliable 
are identified. New experiments at larger scale are described and the results are 
reported. These are combined with the reliable previous studies to form a data set 
covering heights from 3.66 to 50 m and gasflow rates from 0.0002 to  0.59 normal 
m3/s. These wide-ranging data are combined with an integral theory for bubble 
plumes to determine functional relationships between local plume properties and the 
entrainment coefficient and the fraction of the momentum flux that is carried in the 
turbulent velocity fluctuations. These relationships together with the integral theory 
provide a set of equations that are suitable for numerical solution for the mean flow 
properties of any round bubble plume. Examples of the numerical solutions are 
presented and a comparison of one of these with existing experimental data is given. 
The relationships between the local plume properties and the entrainment coefficient 
and the momentum flux carried by the turbulence are interpreted to  provide a 
qualitative understanding of the parameters involved and their influences on the 
plume. 

1. Introduction 
When a continuous stream of gas is released in the interior of a liquid the gas takes 

the form of bubbles which rise owing to buoyancy and which impart a generally 
upward velocity to the surrounding liquid. Such bubble plumes occur above blowouts 
of subsea gas-containing hydrocarbon wells, and it is the desire to understand the 
hydrodynamics of subsea blowouts that has stimulated the most recent studies of 
these plumes. 

Gas enters the liquid in the form of a jet, and the region through which the flow 
goes from jetlike to plumelike is called the zone of flow establishment. The region 
of the flow beneath the upper surface of the liquid extending to a depth about equal 
to the plume diameter is the part of the flow for which the influence of the upper 
surface is significant and i t  is called the zone of surface flow. Usually most of the 
vertical extent of the flow lies in the ‘pure-plume’ region between these two zones. 
It is called the zone of established flow and is the subject of this paper. 

Extensive studies of single-phase plumes have taken place, and a thorough review 
of these is that of Chen & Rodi (1980). The fewer studies of bubble plumes that have 
been done show that these plumes have both notable similarities and differences with 
single-phase plumes. This paper extends the integral theory of plumes to include some 
of these differences and determines approximations for some of the needed functional 
relationships by analysing existing small-scale data together with new experimental 
data for plumes of larger scale. A review of important studies of round bubble plumes 
in non-stratified surroundings known to the author follows. All of the experimental 
studies have been for air released into water. 
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Kobus (1968) performed experiments on round bubble plumes in a laboratory basin 
having a width of 8 m and a depth of 4.7 m, with airflow rates up to  0.0058 normal 
m3/s. For each airflow rate, profiles of velocity us. radius were measured, and each 
of these was fitted with a Gaussian curve whose width and centreline velocity were 
chosen so as to minimize the error between the curve and the measured data. Kobus 
found it necessary to average his data over five-minute intervals (presumably to 
obtain reliable results) because the flow was ‘subject to considerable fluctuations ’. 
These fluctuations could have been caused not only by local turbulence, but also by 
lateral wandering motions of the plume. If wandering did occur, the long-term 
time-average measurements would show greater widths and smaller centreline 
velocities than actually existed with respect to the instantaneous locations of the 
wandering plume centreline ; a fact which must be considered in interpreting the data. 

Because the air-nozzle diameter was very small (0.2 cm in most cases), the flow in 
the nozzle was subsonic only for airflow rates below 0.0009 normal m3/s. For the 
higher airflow rates, the supercritical flow out of the nozzle could have expanded 
rapidly to an unknown radius and interacted with the tank bottom so as to add an 
unknown amount of momentum flux to  the plume. Because of this, the sonic orifice 
data will not be considered further here. 

Subsonic-orifice Gaussian-fit centreline velocity resuits were given by Kobus for 
airflow rates of 0.00040 and 0.00057 normal m3/s. Gaussian-fit widths were given for 
the 0.00040 normal m3/s case, but not at the same set of heights as the velocity data 
so that interpolation between points is necessary to  obtain the centreline velocity- 
widths pairs that are needed for the analysis here. Width data were not given for 
the 0.00057 normal m3/s case, so i t  can only be approximated by interpolating 
between the 0.00040 normal m3/s case and the next-lowest airflow for which width 
data are given, which is 0.0013 normal m3/s. Owing to the uncertainty associated 
with these steps the Kobus data will not be included here in the primary data set 
used for determining plume properties. However, these data will be analysed so that 
they can be compared with other data. 

Topham (1975) performed experiments with air bubble plumes in Saanich Inlet off 
Vancouver Island using air-nozzle depths up to  60 m and airflow rates up to 
0.66 normal m3/s. Profiles of flow speed us. radius were measured at several heights 
from a horizontally suspended 12 m long beam which supported 20 vertical current 
meters. A 6 min average of the data from each current meter was used as the velocity 
at a radius equal to  the distance from the beam centre to the meter. The results for 
plume radii and centreline velocities us. height show too many deviations from smooth 
functions and vary in excessively irregular ways from test to test to be suitable for 
use here in the primary data set. Topham (private communication) has indicated that 
these matters are related, a t  least in part, to lateral motions of the beam caused by 
turbulence in the flow and the fact that the lateral restraint was not stiff. Neverthe- 
less, Topham’s measurements are in qualitative agreement with those of similar scale 
made by the author and which are described subsequently. 

Fannelop & Sjoen (1980) conducted experiments in a laboratory basin having a 
width of 10.5 m and a depth of 10 m using airflow rates up to  0.022 normal m3/s. 
Fluid velocity a t  various points was measured, and in order to obtain ‘satisfactory 
repeatability’ they had to  average their velocity data over 10 rnin time intervals. Both 
the actual data and Gaussian curve fits to  the profiles of velocity us. radius are 
presented. The normalized standard deviation for the curve fitting is observed to be 
about 5 % . Details of two different methods for obtaining Gaussian curve approxim- 
ations and their results for these data are described by Sjoen (1982). The standard 
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deviation between results of the two methods is of the order of 4 % . For the subsequent 
analysis and comparisons considered here, the averages of the two sets of results given 
by Sjoen will be used. 

Milgram & Van Houten (1982) performed experiments on bubble plumes in a 1.65 m 
diameter laboratory tank with a nozzle depth of 3.66 m at airflow rates up to  0.0022 
normal m3/s. I n  addition to measuring profiles of flow speed ws. radius at several 
heights, they also measured profiles of momentum flux and of gas fraction. Observa- 
tions and measurements of the plumes in the tank showed that plume wandering was 
sufficient to bias measurements taken as long-term time averages. This difficulty was 
overcome by the following procedure. When a measurement was to be made a t  a 
particular height and radius, three identical measurement transducers were located 
on a horizontal circle of this radius and concentric with the axis of the tank. The 
output from each transducer was low-pass filtered with a 5 sec time constant. The 
resultant signals were processed by an analog-to-digital converter and a digital 
computer whose program discarded all data except those for which all three signals 
were equal to within a small fraction of the average signal level. This procedure 
limited retained data to those for which the plume centreline was nearly centred in 
the tank, so the radius from the instantaneous centreline to the instrument was 
known. These centering events occurred about once every five minutes on the 
average. For each transducer location circle, the experiment was continued until eight 
centring events occurred and the eight measurements were averaged together to 
obtain the required data point. Profiles of flow speed, momentum flux and gas fraction 
were fitted with Gaussian curves, with the standard deviation of the fits averaging 
about 3 yo of the centreline values. 

All current mean-flow theories for bubble plumes are integral theories for which 
the general forms for radial distributions of velocity and density defect (and the 
momentum flux by implication) are presumed to be known in advance. The presumed 
general forms are chosen to agree with experimental findings. Gaussian forms are most 
commonly used, with the mean velocity and mean density defect given by 

where u is the vertical velocity of the liquid, z is the height measured upward from 
the gas outlet, r is the radius, U is the centreline velocity, b is the ‘plume radius’, 
pw is the mass density of water, pp is the mean mass density of the plume, S is the 
density defect a t  the plume centreline, and h is the ratio of ‘gas-containing radius’ 
to ‘plume radius’. 

Ditmars & Cederwall (1974) developed an integral theory for bubble plumes along 
the same lines as the integral theory for single-phase plumes presented by Morton, 
Taylor & Turner (1956). Both theories are based on an entrainment hypothesis under 
which the volume of surrounding liquid that is entrained into the plume per unit 
height is proportional to both the local centreline velocity and the plume circumference 
2nb, with a constant of proportionality being the entrainment coefficient a. Both 
theories approximate the plume density as that  of the surrounding fluid when 
calculating the momentum flux and the water mass flux, so they contain errors that 
increase with increasing gas fraction. Also, both theories presume the momentum flux 
is that  of the mean flow, so the momentum flux carried by the turbulence is neglected. 
Differences in the theories are that Ditmars & Cederwall allowed the gas to  move more 
quickly than the liquid by means of a pre-specified ‘slip velocity’ and they included 
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the parameter A,  whereas it is absent in the single-phase plume theory of Morton 
et al. 

Ditmars & Cederwall made some conclusions about the values of a and A by 
comparing their theory to the data of Kobus (1968). However, these must be 
discounted, particularly those about A, owing to the aforementioned artifacts 
involved with the Kobus data. 

Fannelop & Sjoen (1 980) determined both approximate similarity solutions and 
numerically integrated solutions to a set of equations that neglected the slip velocity 
of the gas, but otherwise were substantially the same as those used by Ditmars & 
Cederwall. Fannelop & Sjoen applied their theory to the conditions of their 
experiments to  obtain a Comparison between theory and experiment, and to make 
estimates of the entrainment coefficient a. This was done by choosing a value of a 
that  was a constant, independent of depth, for each airflow rate such that the error 
between theory and experiment for plume radius b us. height was minimized. They 
used a value of 0.6 for the gas/velocity radius ratio A,  where this was based on 
qualitative photographic observations of the radius of the gas-containing region. The 
values of a obtained in this way increased with increased gasflow rate; being 0.075 
for a gasflow rate of 0.0050 normal m3/s and increasing to  0.102 for a gasflow rate 
of 0.022 normal m3/s. The comparison between theory and experiment for centreline 
velocity showed that the theoretical values averaged 15 % greater than the experi- 
mental measurements. 

Milgram & Van Houten (1982) developed a theory that  included the effect of gas 
fraction on mass and momentum fluxes, and approximated the turbulent transport 
of mean momentum flux by assuming that a fixed fraction of this flux was carried 
by the turbulence. George, Alpert & Tamanini (1977) found that 8% of the mean 
momentum flux was carried by the turbulence in their single-phase thermal plumes 
in air. A comparison of velocity measurements and momentum flux measurements 
in the bubble plumes of Milgram & Van Houten showed that an average of 50 yo of 
the mean momentum flux was carried by the turbulence, and this value was used 
in applications of their theory. Bubble ‘slip velocity’ was included in the theory and, 
for the same reasons as are subsequently described here, a value of 0.35 m/s was used 
for applications. A comparison of measured radial profiles of velocity and gas fraction 
gave an average value of A of 0.8, and this value was used in application of the theory. 
A fixed entrainment coefficient a was chosen for each gasflow rate in the same way 
as done by Fannelop & Sjoen. Milgram & Van Houten also found that a increased 
with increased gasflow rate; being 0.047 for a gasflow rate of 0.000205 normal m3/s 
and increasing to 0.083 for a gas-flow rate of 0.00234 normal m3/s. However, a curve 
of their values of a vus. gasflow rate does not continue smoothly onto a curve for the 
Fannelop & Sjoen data, which supports the result of dimensional reasoning that other 
factors in addition to  the gasflow must be involved in determining the entrainment 
coefficient. The comparison between theory and experiment for the centreline 
velocity U vs. height for the Milgram & Van Houten study gives agreement wit)hout 
a systematic bias and a normalized standard deviation of about 7 % . This completes 
the review of previous work. 

I n  order to  be able to use an integral plume theory to predict the mean velocity 
and density distributions in a bubble plume of arbitrary depth and gasflow rate, 
values for four parameters are required. These are the bubble ‘slip speed’ ub, the 
gas/velocity radius ratio A ,  the entrainment coefficient a, and the ratio of total 
momentum flux to the momentum flux carried by the mean flow, which is called y.  
The effects of expected variations from the values of ub and A that  will be estimated 
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subsequently have been found to be small by numerical tests. A major purpose of 
this paper is to use experimental results to establish functional relationships between 
plume properties and a and y. 

2. Theory 
2.1. The integral plume equations 

The integral plume theory is based on a principle of local similarity for which radial 
profiles of velocity have similar forms at different heights, as do the radial profiles 
of density defect. These quantities can then be specified by their centreline values 
U ( z )  and S(z), and their characteristic radii b(z)  and hb(z) .  

The gas is presumed to follow the isothermal expansion law, and mean pressure 
variations on horizontal planes are presumed to be small enough to have only 
negligible effects on the plume dynamics. Under these conditions, for a liquid of depth 
H, the gas density pg(z) is given by 

where pT is the gas density at a pressure of one atmosphere, HT is the atmospheric 
pressure head and HB is the pressure head a t  the level of gas release: 

HB = HT+ H. (2.2) 

The integral plume equations will involve the local mean gas fractionf(r, z ) ,  which 
is given by 

and the local gas velocity, which will be approximated as the sum of the local liquid 
speed U ( T , Z )  and a constant slip velocity ub, to approximate the effect of the rise 
velocity of the bubbles relative to the liquid. q(z ) ,  &(z) ,  M ( z )  and B(z),  the gas volume 
flux, the liquid volume flux, the momentum flux and the buoyancy per unit height 
respectively, are expressed in terms of local properties as 

r m  

&(z) = ~ s J  u ( r , z ) [ l - - f ( r , z ) r d r ,  
0 

y is called the momentum amplification factor and (y  - l)/y is the fraction of the mean 
momentum flux that is carried in the turbulence. g is the acceleration due to gravity. 

Closure of the integral plume equations requires a relationship between local plume 
properties and the rate of increase with height of the liquid volume flux. Ditmars & 
Cederwall (1974), Fannelop & Sjoen (1980), and Milgram & Van Houten (1982) all 
used an entrainment hypothesis for the needed relationship, and this will be adopted 
here. It is 

(2.8) 9 dz = 2nab(z) U ( z ) ,  

12-2 
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where a is the entrainment coefficient. However, whereas all previous investigators 
considered the entrainment coefficient as a constant to be specified for any particular 
plume, here it will be considered to be dependent upon local plume properties. 

The three integral plume equations can now be determined. The first is the 
conservation-of-liquid equation (2.8). The second is the conservation-of-gas equation, 
which can be expressed as 

(2.91 -= qTHT q ( 4  
& - Z  

where qT is the gas volume flow rate at a pressure of one atmosphere. The third 
equation results from equating the buoyancy per unit height to the spatial rate of 
change of momentum flux, 

dM 
dz 

B(z) = -. (2.10) 

2.2. Equations for Gaussian projiles of velocity and density defect 

Experimental evidence shows that the radial profiles of velocity and density defect 
are well approximated by Gaussian curves, so (1  . l )  and (1.2) will be used henceforth. 
For these profiles (2.4)-(2.7) become 

(2.11) 

(2.12) 

B(z) = ngh2X(z) bZ(2). (2.14) 

The plume equations (2.8)-(2.10) then become 

(2.15) 

(2.16) 

d 

(2.11) 
with pg(z) given by (2.1). 

2.3. Initial conditions near the bottom of the zone of established flow 
Equations (2.15)-(2.17) can be integrated upward numerically if all parameters are 
known and if conditions near the bottom of the zone of established flow are known 
so that the integration can be started. Equation (2.16) for the conservation of gas 
is valid, so two additional conditions are required. The precise determination of these 
requires unavailable information about the zone of flow establishment, but suitable 
approximations for most conditions can be made. The reasons for this are that over 
most of the extent of the plume the momentum gained in the zone of established flow 
dominates the momentum gained in the zone of flow establishment, and solutions 
to the plume equations are generally particularly stable to perturbations in initial 
conditions. 
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The momentum flux a t  the height zE, where the integration is to be started, is 
estimated as the sum of the momentum flux coming from the gas outlet and an 
estimate of the buoyancy in the zone beneath this height. To minimize the error of 
this estimate, zE should be chosen as low as possible so that the buoyancy beneath 
it is minimized. However, as the height of the gas outlet is approached there is 
expected to be more error in the first part of the integration due to inaccuracies in 
both the Gaussian approximations and the entrainment hypothesis. The best choice 
for zE is the one that gives the best balance between these influences. Although this 
is not known exactly, a reasonable position would seem to be the greater of five gas 
outlet diameters L) and the height of the zone of flow establishment for single-phase 
plumes given by Chen & Rodi (1980). This is 

(2.18) 

where uo is the gas velocity a t  the outlet as determined from the gas volume flow 
rate and the area of the gas outlet. 

Estimating the mean gas speed below z = zE as h0, the estimate for the momentum 
flux becomes 

(2.19) M ( Z E )  = %Cpg(H)UO+p 2q(B2E) [Pw-pg(&E)] gzE. 
UO 

Finally, the centreline plume density defect is estimated as 

(2.20) 

It must be emphasized that these cavalier estimates of M(xE)  and S(Z,) are not 
represented as accurate values for the top of the zone of flow establishment, but rather 
are reasonable values for beginning the numerical integration a t  x = zE. Figure 1 is 
an example of the insensitivity of results over most of the plume of the numerical 
integration to reasonable variations in the initial conditions. 

2.4. Theoretical framework for analysis of velocity measurements 

The measurement data that will be used to  determine the relationship between local 
plume properties and both the entrainment coefficient a and the mornentum-flux 
amplification factory are the laboratory experiments of Fannelop & Sjoen (1980) and 
of Milgram & Van Houten (1982) as well as the larger-scale experiments described 
subsequently. All of these experiments included measurements of radial profiles of 
vertical velocity, but profiles of gas fraction and momentum flux were only measured 
in the second study. For the other experiments these quantities must be determined 
by application of the plume theory to  the velocity measurements, and for consistency 
this procedure will be applied to all of the data. Application of the theory requires 
a priori specification of the bubble ‘slip velocity’ ub and of the gas/velocity radius 
ratio A. 

Photographic measurements of bubble sizes made by the author (for air-bubble 
plumes in water) showed that most of the gas was carried by bubbles whose volumes 
ranged from 0.01 to 33 ern3. Of these, most of the bubbles had volumes between 0.02 
and 0.5 cm3, for which Haberman & Morton (1954) found rise velocities in still water 
between 0.23 and 0.25 m/s. However, the larger and faster-moving bubbles have 
so much more volume than the smaller bubbles that the average gas slip speed 
exceeds 0.25 m/s. Haberman & Morton found a rise velocity of 0.45 m/s for 33 cm3 
bubbles, and the average gas speed is certainly less than this value. For the 
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FIGURE 1 .  The effect of variations in initial conditions for starting the numerical integrations. 
Conditions are as listed below except for notations on individual curves: H = 10 m, zE = 0.1 m, 
g = 9.81 m2/s, q = 0.01 normal m3/s, S(zE) = 500 kg/m3, uo = 25 m/s, pT = 1.3 kg/m3, pw = 
1000 kg/m3, A = 0.8, y = 1.5, a = 0.08, ub = 0.35 m/s, mean gas speed below zE taken as +uo. 

subsequent application of the theory here, a value of 0.35 m/s is used. Figure 2 shows 
an example of the results of numerical integration of the plume equations (2.15)-(2.17) 
for four different values of u,; 0, 0.30, 0.35 and 0.40 m/s. An 0.05 m/s variation in 
u,, changes calculated vertical velocities by about 3 % , but changing ub from 0.35 m/s 
to zero changes calculated vertical velocities by about 20 yo. Hence estimating U b  to 
within f 0.05 m/s can be expected to give relatively accurate results, but U b  cannot be 
neglected altogether. 

By comparing measured gas fraction profiles with measured velocity profiles, 
Milgram & Van Houten found an average value for h of 0.8. No other quantitative 
data are available. The other plumes considered here have larger sizes and liquid 
velocities, but the same bubble sizes. Physical reasoning suggests that these larger 
plumes would have larger values of A (although still less than 1 .O). On the other hand, 
Fannelop & Sjoen recommend h = 0.65. A value of 0.8 will be used here in the analysis 
of the measurements and this is justified, in part, by the fact that a change in h of 
the order of 0.1 makes very little difference to the results. Figure 3 shows theoretical 
results for h = 0.8, 0.9. The effect of the variation is seen to be very small indeed. 

The Gaussian approximations given by ( 1 . 1 )  and (1.2) for radial profiles of velocity 
and density defect will be used. For each measured radial profile at a height z ,  U(z )  
and b(z )  are determined by a fit of (1 .1)  to the data. The local gas density is given 
by (2.1) and the local gas volume flow rate is given by the left-hand side of (2.16). 
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Centreline velocity (m/s) 

FIGURE 2. Effect of gas-bubble slip speed on solution to the plume equations. The bubble slip speeds 
used in the calculations are shown on each curve. Other conditions are as given in figure 1 .  

The local density defect can then be determined from (2.11) as 

[Pw - P g ( 4 1  dz) 
X h 2 6 2 ( 2 )  [ U ( z ) / (  1 + h2)  + U b ]  . X ( Z )  = (2.21) 

The local momentum amplification factor y(z) will be obtained as the ratio of the total 
local momentum flux MT to the momentum flux of the mean flow M,: 

(2.22) 

where Mrn(z)  is obtained from (2.13) with y set equal to 1 .  The total momentum flux 
a t  height z will be calculated as 

MT(z) = M,(zB)+ jz: B(z’) dz’, (2.23) 

where the buoyancy per unit height B(z)  is given by (2.14). 
The height zB will be taken as the lowest height in the zone of established flow a t  

which conditions are measured or estimated. The momentum flux at zB is estimated 
in the fashion of (2.19), but since zB is generally considerably greater than zE,  a 
different estimate for the mean gas speed below zB is required. Within a short distance 
above the height of gas release, the moving material involves a volume flux of water 
that  is of the same order of magnitude as the volume flux of the gas. Therefore the 
average gas speed below zB will be estimated as the average of ~ , , p ~ ( & ~ ) / p ~  and 
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FIGURE 3. Numerical results for gas-velocity radius ratios h of 0.8 and 0.9. The conditions for the 
calculations are those given in figure 1. The values for h are shown on the curves. The difference 
in plume radius 6 for the two values of A is almost indiscernible. 

U(Z,)+Uh. Then 

(2.24) 

Because of uncertainty of the buoyancy below zB, MT evaluated in this way cannot 
be expected to be accurate enough for quantitative estimates of y at zB. For all 
measurement heights above zB that  are used, MT(z )  9 MT(zB), so that (2.23) is 
expected to be accurate enough for making quantitative estimates of y by use of 
(2 .22 ) .  

The other parameter that, depends on local conditions to be determined from the 
experiments is the entrainment coefficient a. Although it  could be obtained from 
experimental determination of tht: terms in (2.8), the differentiation of the liquid 
volume flux would accentuate experimental errors. To avoid this, a will be determined 
by an integration of (2.8) between heights at which radial velocity profiles are 
measured. Call these heights zi ( i  = 1,2 ,  ...). Then, under the presumptions that a 
varies only slightly between zi and zi+l and that the liquid volume flux Q is well 
approximated by a linear function in this same height interval, the integral of (2.8) 
is solved for a as 

where & ( z )  is given by (2.12). 
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FIGURE 4. A depth profile of Bugg Spring. 

3. Experiments 
3.1. Facility and equipment 

I n  order to increase the range of scales of bubble plume data, experiments for 
measuring velocity profiles were conducted with a gas-outlet depth of 50 m and 
gasflow rates up to 0.59 normal m3/s. The experiments took place in Bugg Spring, 
which is a natural sinkhole spring located a t  Okahumpka, Florida, and which is part 
of the United States Naval Research Laboratory. Figure 4 is a cross-sectional profile 
of the spring. Both current,s and spatial temperature variations in the spring are 
smaller than can be measured with ordinary instruments. A barge which is tightly 
moored to  anchors on the shore by five cables floats on the surface with one edge 
of the barge over the deepest part of the spring. An existing gantry was extended 
to a distance of 4.6 m past this edge. A 2.5 m tall vertical air entry pipe having a 
5 cm inside diameter was secured to a concrete anchor block such that the upper open 
end of the pipe was 50 m below the surface and vertically under the extended end 
of the gantry. Air was supplied to the bottom of the pipe through a hose from an 
airflow meter on the barge, which in turn was connected by a hose to  a rotary screw 
air compressor on the shore. 

Velocity profiles were measured with the use of a horizontal array of 36 vertical 
current meters configured as a cross as shown in figure 5. Each of the two arms of 
the cross was 12.9 m long, and the distance between adjacent current meters was 
0.71 m. This permitted an accurate estimation of the location of the instantaneous 
centre of the plume from the location on each of the arms on the cross at which the 
velocity was a maximum. 

A system of four support cables was used to adjust the height of the cross and to 
provide horizontal restraint against turbulence-induced motions of the cross. A taut 
upper cable attached the upper bridle shown in figure 5 to  the gantry. A taut lower 
cable attached to the lower bridle passed through a sheave near the air outlet and 
then went to the barge. Two adjacent ends of the cross rode on vertical cables 
tensioned to about lo4 N which led from the edge of the barge to  anchor weights on 
the bottom. 
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FIGURE 5. Current-meter array used for measuring radial profiles of vertical velocity. 

The current meters were made from the mechanical speed-detecting parts of 
Aanderaa current meters and 36 electronic signal conditioners, each of which 
contained a low-pass filter with a 10 s time constant. The resulting signals were 
sampled a t  a rate of 1 Hz through 36 analog-to-digital channels of a digital 
computer for 10 min for each airflow rate and current-meter cross height. Each of 
the groups of 36 samples was obtained in a time interval of about 0.5 ms, so the 
samples can be considered to  be simultaneous. Finally, for each channel each set of 
ten successive samples was averaged together, giving 60 of these short-time averaged 
measurements for each of the 36 channels in a 10 min measurement period. These 
measurements were made for airflow rates of 0.024, 0.118, 0.283 and 0.590 normal 
m3/s; and for heights above the air outlet of 16.47, 25.62, 37.81, 43.90 and 46.95 m. 

3.2. Data reduction 

The purpose of the data reduction was to fit a Gaussian function as given in (1.1) 
to every radial profile measured with respect to the instantaneous location of the 
plume centreline and thereby obtain values for the centreline velocity U and the 
plume radius h .  This was done by the following steps. 

(1) For each 36-point, 10 s velocity average, there were 18 values along one axis 
of the measuring cross and 18 values along the other. Spline cubic interpolating 
functions were fitted to each of these 18 sets of points. The location of the maximum 
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FIQURE 6. An example of reduced data for a radial profile of vertical velocity. The case shown is 
for a gasflow rate of 0.283 normal m3/s and a height of 16.47 m above the gas outlet. + , reduced 
data point; -, Gaussian-function fit to the data. 

of each of these functions was taken as the value in ‘cross coordinates’ for the location 
of the plume centre. The distance from this location to each of the current meters 
was determined so that 36 sets of values (u, r )  were obtained. This was done for all 
60 sets of 10 s averages so that 2160 pairs of (u, r)-values were obtained for each airflow 
rate and measurement height. 

(2) The range of values of radius r was partitioned into segments 0.08 m long. The 
values of u for all the r-values falling in any particular segment were averaged 
together to obtain a value of u for the midpoint of the segment. This reduced the 
number of pairs of (u, r)-values for each airflow rate and measurement height to about 
100. Figure 6 shows an example of a plot of these values. 

(3) A Gaussian function of the form of (1  . l )  was fitted to the reduced data points 
with U and b chosen to minimize the standard deviation between the function and 
the points. Figure 6 shows the Gaussian approximation to  its data. 

(4) The above procedure gave 20 radial profiles of velocity. The one for a 
measurement height of 46.95 m a t  an airflow rate of 0.118 normal m3/s was ‘out of 
line ’ with other profiles, and the measured profile had excessive scatter. Therefore 
this profile was eliminated from the data, leaving 19 of these larger-scale profiles 
available for analysis. 

(5) The current meters measured velocities in the ( r ,  2)-plane. Since the radial mean 
velocities are small in comparison with the vertical mean velocities, their effects on 
the measured mean velocities are small. However, a small correction can be, and was, 
made for this. For each airflow rate the values of b(z )  and U ( z )  were fitted by spline 
cubic functions so that their derivatives could be easily evaluated. Then, using the 
form of ( 1 . 1 )  and a radial integration of the continuity equation (div V = 0, neglecting 
here the effects of the variation in mean density) the small radial velocity was found. 
From this and the measured velocities in the ( r ,  2)-plane, the vertical velocity 
components were calculated. These radial profiles of vertical velocity were then fitted 
with Gaussian curves as before. The results are shown in table 1 .  
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2 

1.98 
16.47 
25.82 
37.81 
43.90 
46.95 

1.98 
16.47 
25.62 
37.81 
43.90 

1.98 
16.47 
25.62 
37.81 
43.90 
46.95 

1.98 
16.47 
25.62 
37.81 
43.90 
46.95 

0.65 
2.25 
3.85 
5.45 
7.05 
8.65 

0.65 
2.25 
3.85 
5.45 
7.05 
8.65 

0.65 
2.25 
3.85 
5.45 
7.05 
8.65 

0.65 
2.25 
3.85 
5.45 
7.05 
8.65 

Raw 
___*_- 

6 

0.162 
1.540 
1.920 
2.822 
2.470 
2.980 

0.250 
1.780 
2.399 
3.686 
4.355 

0.338 
2.320 
3.590 
5.569 
5.976 
7.190 

0.395 
2.609 
3.399 
5.556 
6.108 
7.030 

0.110 
0.300 
0.465 
0.600 
0.735 
0.765 

0.135 
0.310 
0.465 
0.710 
0.775 
0.905 

0.135 
0.355 
0.540 
0.615 
0.800 
0.965 

0.155 
0.350 
0.515 
0.705 
0.930 
1.080 

U 

1.129 
0.489 
0.515 
0.498 
0.608 
0.538 

1.543 
0.860 
0.829 
0.833 
0.745 

1.739 
1.114 
0.970 
0.881 
0.912 
0.794 

2.103 
1.326 
1.174 
1.189 
1.171 
1.121 

0.985 
0.750 
0.630 
0.545 
0.585 
0.575 

0.975 
0.900 
0.815 
0.735 
0.710 
0.655 

1.130 
1.050 
0.975 
0.900 
0.840 
0.765 

1.170 
1.055 
1.020 
0.965 
0.855 
0.815 

Smooth 
+ 

6 U 4 c! S 

Bugg Spring experiment data 
0.150 
1.572 
1.967 
2.466 
2.895 
3.191 

0.257 
1.732 
2.476 
3.621 
4.384 

0.328 
2.359 
3.583 
5.365 
6.393 
6.955 

0.412 
2.488 
3.615 
5.296 
6.343 
6.944 

0.113 
0.293 
0.465 
0.614 
0.721 
0.769 

0.134 
0.307 
0.491 
0.665 
0.807 
0.897 

0.134 
0.362 
0.518 
0.645 
0.781 
0.970 

0.161 
0.334 
0.524 
0.720 
0.911 
1.086 

1.127 
0.506 
0.477 
0.562 
0.553 
0.516 

1.542 
0.863 
0.823 
0.838 
0.743 

1.740 
1.109 
0.971 
0.906 
0.861 
0.823 

2.105 
1.316 
1.188 
1.184 
1.162 
1.129 

0.0042 
0.0055 
0.0070 
0.0109 
0.0149 
0.0184 

0.0204 
0.0272 
0.0345 
0.0534 
0.0735 

0.0490 
0.0653 
0.0827 
0.1280 
0.1762 
0.2172 

0.1022 
0.1362 
0.1723 
0.2668 
0.3674 
0.4527 

0.077 
3.929 
5.797 

10.725 
14.555 
16.503 

0.306 
8.124 

15.834 
34.475 
44.81 1 

0.552 
19.351 
39.102 
81.840 

110.436 
124.919 

1.041 
25.493 
48.652 

104.145 
146.677 
170.688 

88.21 
1.68 
1.40 
1.28 
1.29 
1.35 

118.20 
5.12 
3.27 
2.34 
2.36 

159.24 
5.65 
3.39 
2.44 
2.45 
2.62 

182.09 
9.44 
6.08 
4.40 
4.28 
4.49 

Fannelop & Sjoen data 
0.987 0.0026 
0.748 0.0028 
0.620 0.0031 
0.569 0.0035 
0.566 0.0039 
0.580 0.0044 

0.978 0.0052 
0.893 0.0057 
0.815 0.0062 
0.749 0.0069 
0.696 0.0078 
0.659 0.0089 

1.131 0.0078 
1.049 0.0085 
0.974 0.0094 
0.904 0.0104 
0.836 0.0117 
0.766 0.0133 

1.162 0.0115 
1.077 0.0126 
1.008 0.0138 
0.945 0.0153 
0.881 0.0172 
0.807 0.0197 

0.038 106.55 
0.200 20.41 
0.420 9.83 
0.672 6.55 
0.922 5.35 
1.076 5.30 

0.052 152.73 
0.260 33.51 
0.614 15.18 
1.036 9.65 
1.420 7.67 
1.660 7.31 

0.059 206.48 
0.426 32.63 
0.816 18.33 
1.174 13.79 
1.596 11.06 
2.255 8.63 

0.086 209.19 
0.369 55.53 
0.860 25.88 
1.529 15.85 
2.286 11.62 
2.978 9.83 

Airflow 
(normal 

Y m3/s) 

1.24 

1'50 lT6 0.024 

1.15 
1.26 

0.118 
0.91 
1.07 

$ 0.283 

0.81 
0.88 

0.99 

0'99 0.590 
0.83 } 
0.81 
0.84 

0.005 
1.11 
1.13 
1.25 

0.99 
1.07 
1.28 

0.97 
1.07 
1.09 

1.01 
1.13 
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z 

0.32 
0.96 
1.58 
2.20 
2.78 

0.32 
0.96 
1.58 
2.20 
2.78 

0.32 
0.96 
1.58 
2.20 
2.78 

0.32 
0.96 
1.58 
2.20 
2.78 

Raw 
-7 

b 

0.025 
0.063 
0.103 
0.128 
0.144 

0.031 
0.082 
0.129 
0.158 
0.201 

0.039 
0.100 
0.137 
0.183 
0.248 

0.048 
0.117 
0.167 
0.223 
0.288 

U 

0.662 
0.438 
0.321 
0.326 
0.358 

0.774 
0.527 
0.456 
0.416 
0.445 

0.903 
0.598 
0.553 
0.446 
0.498 

1.021 
0.675 
0.594 
0.539 
0.580 

Smooth 
-+ 

b U q Q S 
Milgram & Van Houten data 

0.024 
0.064 
0.101 
0.129 
0.144 

0.030 
0.085 
0.125 
0.161 
0.200 

0.039 
0.099 
0.138 
0.182 
0.248 

0.048 
0.116 
0.168 
0.222 
0.288 

0.664 
0.432 
0.331 
0.319 
0.360 

0.772 
0.537 
0.441 
0.426 
0.442 

0.896 
0.628 
0.507 
0.478 
0.490 

1.017 
0.691 
0.569 
0.556 
0.575 

0.0002 
0.0002 
0.0002 
0.0002 
0.0002 

0.0004 
0.0004 
0.0004 
0.0004 
0.0005 

0.0009 
0.0009 
0.0010 
0.0010 
0.001 1 

0.0018 
0.0018 
0.0019 
0.0020 
0.0022 

0.001 168.73 
0.006 31.50 
0.011 15.03 
0.017 9.76 
0.023 7.95 

0.002 244.43 
0.012 40.01 
0.021 21.40 
0.034 13.72 
0.056 9.17 

0.004 312.58 
0.019 63.62 
0.030 38.18 
0.049 23.83 
0.094 13.41 

0.006 387.81 
0.028 87.76 
0.050 48.91 
0.085 29.94 
0.149 18.43 

Airflow 
(normal 

Y m"/@ 

2.32 
1.93 

iz 1 0.00050 
1.85 
1.44 

i::: 1 0.00118 
2.51 
1.69 

- 

- 

2.35 
1.70 

TABLE 1. The momentum-amplification factors and plume properties obtained from the data 
analysis at the measurement heights 

4. Data analysis 
4.1. The data set 

The goals of the data analysis are the determinations and explanations of functional 
relationships between local plume properties and the entrainment coefficients CL and 
the momentum amplification factory. The experimental measurements used for these 
are the relatively small-scale measurements of Milgram & Van Houten (1982), the 
measurements a t  about three times larger scale of Fannelop & Sjoen (1980) and the 
measurements at about fifteen times larger scale made in Bugg Spring. Each of these 
sets of measurements contains several radial profiles of vertical velocity a t  each of 
several airflow rates, with these profiles approximated by Gaussian functions of the 
form of (1.1). Thus the data to  be used here are in the form of values b ( z )  and U(z )  
at each airflow rate. 

For the Fannelop & Sjoen experiments the lowest measurement height was 6.5 yo 
of the gas-outlet depth, whereas for the Milgram & Van Houten experiments and for 
the Bugg Spring experiments the equivalent percentages were 26% and 32% 
respectively. The percentage is small enough for (2.24) to be applied a t  the lowest 
height for the Fannelop & Sjoen experiments, but this is not the case for the two latter 
experiments. In  these cases, conditions a t  adequately low points were estimated by 
an application of the integral theory. This was done as follows. For each airflow rate, 
the plume equations (2.15)-(2.17) were numerically integrated several times starting 
at a height zE as given by (2.18); each time with different values of a and y ,  which 
were taken, for this step only, to be independent of height. The integration that best 
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FIGURE 7. Example of a numerical integration used to estimate conditions a t  a low point in the 
zone of established flow. The conditions of the example correspond to an airflow rate of 0.1 18 normal 
m3/s in the Bugg Spring experiments. The numerical integration was done with h = 0.8, zE = 0.5 m 
and S(z,) = 500 kg/m3. The best fit to the data was with y = 1.1 and a = 0.087, which is the case 
that is shown. 

fitted the measured values of b(z )  and U(z)  was chosen in each case. An example of 
this is shown in figure 7 .  As is demonstrated in figure 1, errors in initial conditions 
for beginning the integration are most influential in the region below the minimum 
(maximum negative) slope of the function U(z) .  Therefore a value of zB was chosen 
for application of (2.24) that  was above this point of minimum slope, and the required 
values of U(zB)  and b(zB) were obtained from the numerical integration. The values 
used for zB were 0.32 m for the Milgram & Van Houten experiments and 1.98 m for 
the Bugg Spring experiments. 

For all three sets of experiments, values of b(z )  and U(z )  were fitted with spline 
cubic functions. Instead of forcing these functions to fit all the data points exactly, 
functions with four equally spaced nodal points with extrapolated end point 
curvatures were used subject to the criterion of minimum variance with the 
unsmoothed data. Since data at five or six heights were used, this process introduced 
a small amount of data smoothing. The spline cubic functions were used for the 
remainder of the data analysis. Table 1 shows both the unsmoothed data and the 
evaluations of the spline cubic functions. At each data height these evaluations were 
used together with (2.21) and (2.14) to determine the centreline density defect and 
the buoyancy per unit height which was then in turn fitted with a four-nodal-point 
cubic spline function. This was then integrated by quadrature to  evaluate (2.23) a t  
each data height. With this done, the momentum amplification factor was evaluated 
from (2.22) a t  each data height except for zB, and these values are also shown 
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in table 1. Finally, table 1 shows the values of the liquid volume flux & ( x )  which were 
determined from (2.12). 

The values of the entrainment coefficient a were determined from (2 .25)  a t  positions 
midway between data heights, and these are shown in table 2. Values of both a and 
y for the highest measurement point a t  the two largest gasflow rates in the Milgram 
& Van Houten data appear ‘out of line’ with other values. Therefore these two data 
rows for both the a- and y-data are not used in the subsequent data analysis. They 
are shown in tables 1 and 2 because they were used in the raw data set. 

4.2. The entrainment coeficient 

For single-phase plumes many investigators have proposed a constant value for the 
entrainment coefficient, while others (cf. Fox 1974; Seban & Behnia 1976) have 
suggested a functional relationship between local plume properties and the entrain- 
ment coefficient of the form, 

(4.1) 
K2 
F:: 

%ingle phase = Kl +- 

where K ,  and K, are constants and the densiometric plume radius Froude number 
is given in terms of the variables used here as 

The entrainment coefficients for bubble plumes in the data set are not constants, and 
a quantitative comparison with (4.1) shows that this functional relationship does not 
apply to bubble plumes. Therefore the approach taken here is to first determine the 
dimensionless group upon which the entrainment coefficient is most dependent and 
then to determine an empirical relationship between the group and the entrainment 
coefficient, based on the measured data and a few simple concepts. The purposes of 
this approach are to provide a quantitative formula for predicting entrainment 
coefficients and to aid in achieving a qualitative physical understanding of how the 
bubbles influence entrainment. 

It is assumed that the viscous forces are small in comparison with pressure, inertia 
and surface-tension forces. Then the local independent variables are b ,  g, 8, pw-pg, 
ub, T, and U or q. Either U or q can be taken as independent, but not both. The 
relationship between the entrainment coefficient and each dimensionless grouping of 
these variables with rational exponents whose denominators were 10 or less was 
examined and the one giving the best collapse of the data is A 3 q ~ g ~ o ( p w - - p g ) ~ T ~ ,  
where the centreline gas fraction is 

A = - .  

This dimensionless group will be called the bubble Froude number FB, and it will be 
helpful to  express i t  as 

FB = A I - ,  

1 2 %  

(4.3) 
s 

P w  - Pg 

Lm 
LEI 

(4.4) 

where L,  = (g, (4.5) 

Lm is a measure of the mixing distance of bubble motions in the turbulence, as will 
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z 

9.23 
21.05 
31.71 
40.86 
45.43 

9.23 
21.05 
31.71 
40.86 

9.23 
21.05 
31.71 
40.86 
45.43 

9.23 
21.05 
31.71 
40.86 
45.43 

1.45 
3.05 
4.65 
6.25 
7.85 

1.45 
3.05 
4.65 
6.25 
7.85 

1.45 
3.05 
4.65 
6.25 
7.85 

1.45 
3.05 
4.65 
6.25 
7.85 

0.64 
1.27 
1.89 
2.49 

0.64 
1.27 
1.89 
2.49 

b 

0.86 
1.77 
2.22 
2.68 
3.04 

0.99 
2.10 
3.05 
4.00 

1.34 
2.97 
4.47 
5.88 
6.67 

1.45 
3.05 
4.46 
5.82 
6.64 

0.20 
0.38 
0.54 
0.67 
0.75 

0.22 
0.40 
0.58 
0.74 
0.85 

0.25 
0.44 
0.58 
0.71 
0.88 

0.25 
0.43 
0.62 
0.82 
1 .oo 

0.04 
0.08 
0.12 
0.14 

0.06 
0.10 
0.14 
0.18 

IJ q s W 

Bugg Spring experiment data 
0.817 0.0047 44.95 0.290 
0.492 0.0062 1.54 0.183 
0.520 0.0085 1.34 0.244 
0.557 0.0126 1.28 0.122 
0.535 0.0165 1.32 0.061 

1.203 0.0234 61.66 0.290 
0.843 0.0304 4.19 0.183 
0.831 0.0419 2.81 0.244 
0.790 0.0618 2.35 0.122 

1.425 0.0560 82.45 0.290 
1.040 0.0730 4.52 0.183 
0.938 0.1004 2.91 0.244 
0.883 0.1483 2.44 0.122 
0.842 0.1946 2.53 0.061 

1.710 0.1168 95.77 0.290 
1.252 0.1521 7.76 0.183 
1.186 0.2094 5.24 0.244 
1.173 0.3091 4.34 0.122 
1.146 0.4056 4.39 0.061 

Fannelop and Sjoen data 
0.868 
0.684 
0.594 
0.568 
0.573 

0.935 
0.854 
0.782 
0.722 
0.678 

1.090 
1.011 
0.939 
0.870 
0.801 

1.120 
1.042 
0.976 
0.913 
0.844 

0.0027 
0.0030 
0.0033 
0.0037 
0.0041 

0.0054 
0.0060 
0.0066 
0.0073 
0.0083 

0.0082 
0.0089 
0.0099 
0.01 10 
0.0125 

0.0120 
0.0131 
0.0145 
0.0162 
0.0184 

63.48 
15.12 
8.19 
5.95 
5.33 

93.12 
24.34 
12.42 
8.66 
7.49 

119.56 
25.48 
16.06 
12.42 
9.84 

132.36 
40.71 
20.87 
13.73 
10.72 

0.162 
0.162 
0.162 
0.162 
0.162 

0.162 
0.162 
0.162 
0.162 
0.162 

0.162 
0.162 
0.162 
0.162 
0.162 

0.162 
0.162 
0.162 
0.162 
0.162 

Airflow 
(normal 

U m”4 

0.056 0.024 

0.060 
0.037 

0.067 
0.063 

0‘076 0.118 

0.072 

0.096 
0.085 

0.133 0.283 

0.108 
0.111 

0.144 
0.135 

0.137 0.590 

0.108 
0.106 

0.163 
0.165 

1 

1 
1 

1 

1 
1 
1 
1 

0.092 
0.084 
0.078 0.005 
0.066 
0.036 

0.093 0.010 

0.101 
0.103 

0.072 
0.041 

0.065 0.015 

0.135 
0.087 

0.068 
0.093 

0.110 0.0221 

0.102 
0.109 

0.101 
0.082 

Milgram and Van Houten data 

0.381 0.0002 23.27 0.169 0.040 
0.548 0.0002 100.11 0.175 0.045 

0.325 0.0002 12.39 0.169 0.043 
0.340 0.0002 8.85 0.158 0.039 

0.489 0.0004 30.70 0.169 0.047 
0.654 0.0004 142.22 0.175 0.065 

0.434 0.0004 17.56 0.169 0.055 
0.434 0.0004 11.44 0.158 0.074 
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z b U 
0.64 0.07 0.762 
1.27 0.12 0.568 
1.89 0.16 0.493 
2.49 0.22 0.484 

0.64 0.08 0.854 
1.27 0.14 0.630 
1.89 0.19 0.563 
2.49 0.25 0.566 

Airflow 
(normal 

Q S W a m”4 

0.0010 50.90 0.169 0.042 o,00118 
0.0009 188.10 0.175 0.071 

0.0010 31.01 0.169 0.063 
0,0011 18.62 0.158 0.118 

0,0019 68.33 0.169 0.060 o,oo234 
0.0018 237.78 0.175 0.078 

0.0020 39.43 0.169 0.083 
0.0021 24.19 0.158 0.121 

1 
i 

TABLE 2. The entrainment coefficients and plume properties at heights midway between measure- 
ment heights. The entrainment coefficients have been evaluated by (2.25) and the properties b, 
U ,  q and S are the averages of the values above and below the midpoints. W is the distance zi+l - zi 
used in (2.25) divided by the total plume height. 

be explained shortly. L,  is the characteristic distance between bubbles since 
(T/g(p,  -pg) )$  is the characteristic lengthscale of a bubble. Application of the 
experimentally determined equation (11) of Hu & Kintner (1955), for the maximum 
stable drop diameter of a liquid in another of different density, to the case of a gas 
bubble in water gives a mean diameter of 3.77(T/g(pW-p,))4. This is the diameter 
of a spherical bubble having the same volume as the moving non-spherical bubble. 
For air bubbles in water this volume is 0.8 om3, which is consistent with the typical 
sizes that are observed. 

Figure 8 shows the data points of a us. FB. In addition to the data points, an 
additional condition used in determining a form for a functional relationship between 
a and FB is that as FB+ 00 the plume is expected to act like a single-phase plume 
because each bubble is mixed through a volume that contains many other bubbles 
so that the bubbles and their wakes are diffuse. For this limit the entrainment 
coefficient relationship will be required to approach (4.1). A functional relationship 
that meets these conditions and which is consistent with the trend of the data in figure 
8 is 

(4.7) 

For fitting (4.7) to the data in table 2 each datum point ai was assigned a weight 
W j  taken as the ratio of the vertical distance zi+,-zi used in (2.25) for evaluating 
aj to the total depth H. The constants A,, A,, K, and K ,  were chosen so as to minimize 
the weighted square error E: over the 53 data points of table 2 that  were used: 

The value of K, found by this process was so small that, over the range of data points, 
the K ,  term in (4.7) varied from 2 yo to 6 Yo of the K ,  term. The value found for A, 
was 0.95. Because of these findings and the fact that  the data are neither compre- 
hensive enough or accurate enough to predict a in complete detail, i t  was deemed 
appropriate to  set K ,  to zero and A, to 1 and thereby replace (4.7) with the simpler 
form 

(4.9) 
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FIGURE 8. The entrainment coefficient a us. the bubble Froude number FB: x , calculated from 
primary data set; 0,  calculated from subsonic-orifice Kobus data; 0, average of calculated values 
from Topham data: the points shown from left to right are for gas-outlet depths of 60,60 and 53 m 
and gasflow rates of 0.367, 0.443 and 0.660 normal m3/s respectively, -, equation (4.9) with 
K = 0.165 and A = 7.598. 

The weighted error-minimization process was then repeated, with the results 

K = 0.165, A = 7.598. (4.10a, b) 

Figure 8 shows the function a(FB). 
Much of the scatter of the data points in figure 8 has been found to result from 

small variations from smooth functions in the measured values of b ws. z. This scatter 
can be greatly reduced by a consideration of averages over height. For each 
experiment a t  a fixed airflow rate, the bubble Froude numbers a t  different heights 
vary by up to 25 yo from their height average as a rule. This variation is small enough 
to allow a comparison of height-averaged entrainment coefficient with height-averaged 
bubble Froude number to  be useful. In  forming these height averages, the individual 
quantities were weighted in accordance with the values of W given in table 2. Figure 
9 shows the height-averaged data points. A function of the form of equation (4.9) 
was fitted to  these data and the best (minimum r.m.s. error) fit was obtained with 
K = 0.165 and A = 7.907. Figure 9 shows both this function and the previous fit to 
the individual data points with A = 7.598. The fact that  the difference is so small 
means that the influence of the scatter on the functional fit can be neglected, so the 
values given in (4.10) will be used in subsequent sample calculations. 

The process of entrainment across an interface between rotational and irrotational 
fluids is explained in detail by Townsend (1976, chap. 6). Two aspects of the 
entrainment process that are identified are 
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FIGURE 9. Entrainment coefficient m. bubble Froude number for height-averaged data: x , 
calculated from primary data set ; 0, calculated from subsonic-orifice Kobus data ; 0, calculated 
from Topham data;  --, equation (4.9) with K = 0.165 and A as shown. 

(1) the entrainment by ordinary turbulent eddies of the rotational motion a t  the 
interface ; 

(2) the increase of entraining interface area caused by undulations and folding of 
the interface. In  the case of free turbulent shear flows this effect is made particularly 
strong by ‘entrainment eddies ’, which grow due to interfacial instabilities and 
ultimately overturn and engulf parcels of formerly irrotational fluid in the rotational 
domain. 
The increase in entrainment coefficient with increasing bubble Froude number can 
be qualitatively understood, at least in part, in terms of these effects. 

George et al. (1977) measured higher r.m.s. turbulence levels in the centre of a 
single-phase plume than at larger radii. This can be expected to occur for bubbb 
plumes as well, Because the bubbles and their wakes generally move faster than the 
surrounding water, they can mix the more turbulent central fluid towards the edges 
of the plume. The effectiveness of carrying out this mixing all the way to the 
entrainment interface must be increased when the mixing distance of each bubble 
is increased with respect to the bubble spacing by increasing the lateral mixing action 
from bubble to bubble. I n  addition, the mixing action of the bubbles can mix the 
high-velocity fluid near the centre of the plume towards the edges. To the exteiit that 
this process is unsteady it increases the turbulence level near the entrainment 
interface. Both of these effects increase the turbulent energy of the ordinary eddies 
near the interface. 

Townsend (1976, 56.14) presents similarity arguments which indicate that the 
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augmentation of the entrainment coefficient by the ‘entrainment eddies ’ is propor- 
tional to the ratio of the r.m.s. turbulent velocity to the mean centreline velocity. 
Although the analysis is for a two-dimensional flow, the arguments apply to 
axisymmetric flows as well just so long as there are instabilities that start the 
entrainment eddies. These undeniably do form, as they can be seen as billows along 
the sides of the plume (see the photograph presented by Fannelop & Sjoen 1980). 
Therefore the increase in turbulence near the interface associated with increased 
bubble Froude number is expected to increase the entrainment coefficient through 
action of the entrainment eddies in addition to the direct increase associated with 
the ordinary eddies. 

The characteristic length L, = (q2/gA2) i  has been interpreted here as the bubble 
mixing distance. By combining (2.11) and (4.5) this can be written as 

L, = Id[(& +u,)./g]’(Ab)t 

Thus on a logarithmic scale the radius of the gas-containing region contributes 80 % 
to the mixing distance and ( V / (  1 + A2) + ub)2/g contributes 20 %. This latter 
characteristic length is a measure of how far a bubble can penetrate against the 
hydrostatic pressure, because the quantity in parentheses is the average bubble speed 
in the gas-containing region and the added water mass of a bubble is proportional 
to the volume of the bubble. The factor of A t  in the definition of the bubble Froude 
number can be viewed as a modification to the ratio L,/L, to account for the effect 
of the bubble size on the mixing process. 

4.3. The momentum-ampli$cation factor 

A similar process to the one used for the entrainment coefficient was used to find an 
empirical function for the momentum-amplification factor y.  The dimensionless 
grouping of the independent variables giving the best collapse of the data of table 
1 is U2(pw-pg)~g- tA-8T-~ .  This quantity will be called the phase distribution 
number N p ,  and it can be expressed as 

Np = Lv/L,, (4.11) 

where L, is the vertical lengthscale of the plume motion: 

L, = V / g A .  (4.12) 

For a fixed value of A,  Lv is a measure of the vertical distance over which the 
momentum flux is significantly altered by buoyancy, since the momentum flux is very 
wetrly doubled in a distance of Lv/2A2. The vertical distance Lv in units of the 
characteristic distance between bubbles is Np. Figure 10 shows the data points of 
y 71s. Np. For determining the form of a functional relationship between y and Np 
two conditinns were used in addition to the data points. These are as follows. 

( 1 )  As NP+0 the plume degenerates to an occasional single bubble. In  this limit, 
y ,  the ratio of total momentum flux to the momentum flux in the mean flow becomes 
l a q e  wit>hout limit. 

(2) As lip+ 00 the bubbles are very closely spaced and the plume must act like 
a single-phase plume. Most single-phase plume investigations have been based on 
y = 1 ,  although the measurements of George et al. (1977) indicate y = 1.07. Data fits 
for both asymptotic limits were determined, 
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FIGURE 10. The momentum-amplification factor y vs. the phase-distribution number N,. x , 
calculated from primary data set; 0, calculated from subsonic-orifice Kobus data; ---, equation 
(4.13) with C, = 377.7 and C, = 1.25, and (4.14) with D, = 977 and D, = 1.5; ----,equation (4.13) 
with C, = 111.3 and C ,  = 1.0. 

Functional relationships which meet the above conditions and are consistent with 
the trend of the data points in figure 10 are 

Cl y(Np) = 1.0+ - 
Npc~ '  

Dl y(Np) = 1.07 + - 
NpDz' 

.(4.13) 

(4.14) 

Experimental values of y were not evaluated a t  the lowest of each set of data heights 
shown in table 1 because of the large influence a t  these heights of potential errors 
in the estimate of the buoyancy beneath them. Also the two aforementioned 
'out-of-line' points in the Milgram & Van Houten data were excluded. This leaves 
53 data points. C,, C,, D ,  and D, were determined so as to minimize E;, which is 
the square error over these 53 points: 

53 
E; = 2 [Yj-y(NP)12. (4.15) 

j-1 

No weighting function of height differences was used in this case because the 
experimental evaluations of y do not depend directly on measured differences a t  two 
adjacent measurement heights as was the case with a. 
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The values obtained for C,, C,, D, and D, are 

C, = 337.7, C, = 1.25, (4.15a) 

D, = 977, D, = 1.5. (4.15b) 

Figure 10 shows these functional relationships. 
y- 1 is nearly equal to  the ratio of the averages of the squared turbulent vertical 

velocity to the squared mean vertical velocity in a cross-section of the plume. Thus 
high values of y are associated with large turbulent velocities compared with the 
mean, and vice versa. High values of y have been found to occur for small values 
of N p ,  which implies a relatively slow mean flow and relatively widely spaced bubbles. 
For this case much of the momentum is carried by the fluid moving with the bubbles 
and their distinct wakes, which is consistent with high turbulent velocities compared 
with the mean velocity. For large values of N ,  the wakes of the bubbles are merged 
together, so the turbulent velocities are relatively small in comparison to the mean. 

The fact that  the independent variable Np giving the best collapse of the data is 
a comparison of L, with V / g A  rather than (b2U2/gA) i  is important. If this latter 
characteristic length were used in forming N,, the independent variable (cubed) 
would be a measure of the number of bubbles in a volume of the plume having the 
characteristic axial length V / g A .  The reason why the independent variable involves 
only the characteristic axial length is probably because, in general, this length is much 
greater than the plume radius 6. As a result, the ordinary turbulence in the plume 
can mix the wakes of the bubbles through a lateral distance b to a much greater extent 
in a characteristic time U / g A  than i t  can through the much larger vertical distance 
V / g A .  Thorough mixing of the wakes over this larger distance can only occur if the 
distance is subdivided by many bubbles, which is the case of large Np. 

4.4. Results from other experiments 

The subsonic orifice data of Kobus (1968) and the data of Topham (1975) were 
analysed in precisely the same way as was done with the primary data set. Tables 
3 and 4 for the Kobus and Topham data are analogous to tables 1 and 2 for the 
primary data set. The calculated values of a and y for the Kobus data are also shown 
in figures 8-10. The y-values for the Topham data are not reasonable. The a-values 
for the Topham data have unreasonable variations with height due to  the irregular 
shapes of b vs. z .  However, the height-averaged values of a for the Topham data are 
reasonable, and these are shown on figures 8 and 9. 

5. Plume wandering 
If a radial profile of a physical quantity in a bubble plume is measured by a set 

of long-term time averages, each a t  a radius reckoned with respect to a vertical line 
above the gas outlet, plume wandering can influence the measurements. I n  the 
presence of plume wandering, such a measured profile will generally have a smaller 
centreline value and a larger width than a profile reckoned with respect to the 
instantaneous location of the centreline. 

5.1. Mathematical model 

Consider a horizontal plane (X, Y )  through a bubble plume whose vertical velocity 
profile is given by 

(5.1) 
u =  uexp(-T),  x2 + y2 
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4.228 
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3.012 
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5.303 
5.770 

U 
0.390 
0.380 
0.380 
0.370 
0.350 
0.400 
0.350 
0.370 

0.530 
0.530 
0.520 
0.440 
0.490 
0.480 
0.470 
0.430 

1.209 
1.466 
1.191 
1.110 
1.350 
1.550 

1.432 
1.544 
1.148 
0.904 
1.061 

1.149 
1.617 
1.545 
1.026 
0.972 
1.201 

Smooth 
& 

b 
0.079 
0.100 
0.130 
0.167 
0.200 
0.228 
0.261 
0.276 

0.088 
0.110 
0.144 
0.189 
0.221 
0.248 
0.285 
0.316 

1.674 
3.067 
4.444 
5.430 
5.609 
5.048 

1.544 
2.053 
2.888 
4.115 
5.339 

1.191 
1.520 
2.948 
4.467 
5.281 
5.771 

U ff 
0.388 0.0003 
0.385 0.0003 
0.376 0.0003 
0.367 0.0003 
0.369 0.0003 
0.373 0.0004 
0.371 0.0004 
0.361 0.0004 

0.530 0.0004 
0.533 0.0004 
0.509 0.0004 
0.463 0.0005 
0.466 0.0005 
0.484 0.0005 
0.478 0.0005 
0.426 0.0006 

Topham data 

1.238 0.0567 
1.375 0.0659 
1.266 0.0785 
1.141 0.0970 
1.262 0.1316 
1.593 0.1674 

1.438 0.0685 
1.517 0.0809 
1.187 0.0968 
0.878 0.1236 
1.068 0.1629 

1.226 0.1134 
1.501 0.1197 
1.570 0.1442 
1.116 0.1792 
0.877 0.2138 
1.221 0.3153 

Q S 
0.007 39.86 
0.012 25.98 
0.020 15.61 
0.032 10.09 
0.046 7.40 
0.061 5.86 
0.079 4.72 
0.086 4.38 

0.013 39.53 
0.020 25.77 
0.033 15.86 
0.052 10.21 
0.071 7.79 
0.093 6.33 
0.122 5.07 
0.133 4.50 

10.859 9.04 
40.599 2.91 
78.520 1.75 

105.609 1.56 
124.681 1.85 
127.421 2.47 

10.724 11.55 
20.036 7.44 
31.050 5.34 
46.606 4.08 
95.572 2.83 

5.388 35.93 
10.814 20.21 
42.767 6.27 
69.827 4.31 
76.660 4.29 

127.530 4.29 

Airflow 
(normal 

Y m”s) 

1.89 
1.64 
1.50 
1.53 

1-43 
1.28 1 0.00057 

1.03 
0.94 
1.08 

0.36 
0.40 
0.38 

0.64 ’ 

1.35 
0.79 

0.80 
1.29 
0.89 

TABLE 3. The momentum-amplification factors and plume properties obtained for the Kobus 
and Topham data  from data  analysis at the measurement heights 

where x and y are horizontal coordinates relative to the instantaneous centreline 
location. Furthermore, suppose the location of the centreline is a joint Gaussian 
random variable (6 ,  v ) ,  whose probability density function is given by 

the overbar designating the statistical average. 

measurements along Y = 0, which will be called uL: 
Let the origin of the ( X ,  Y)-plane be a t  the mean centreline location, and consider 

b2 
UL(X) = uexp(  - (5.4) 
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10.00 
19.50 
29.00 
38.35 
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21.50 
29.00 
37.00 

b 

0.09 
0.12 
0.15 
0.18 
0.21 
0.24 
0.27 

0.10 
0.13 
0.17 
0.21 
0.23 
0.27 
0.30 

2.37 
3.76 
4.94 
5.52 
5.33 

1.80 
2.47 
3.50 
4.73 

1.36 
2.23 
3.71 
4.87 
5.53 

U 

0.386 
0.381 
0.372 
0.368 
0.371 
0.372 
0.366 

0.531 
0.521 
0.486 
0.465 
0.475 
0.481 
0.452 

1.307 
1.321 
1.204 
1.202 
1.428 

1.478 
1.352 
1.033 
0.973 

1.364 
1.535 
1.343 
0.996 
1.049 

4 s 
Kobus data 

0.0003 32.47 
0.0003 20.34 
0.0003 12.85 
0.0003 8.74 
0.0004 6.63 
0.0004 5.29 
0.0004 4.55 

0.0004 32.65 
0.0004 20.82 
0.0004 13.04 
0.0005 9.00 
0.0005 7.06 
0.0005 5.70 
0.0005 4.78 

Topham data  
0.0610 5.97 
0.0716 2.33 
0.0867 1.65 
0.1117 1.70 
0.1473 2.16 

0.0742 9.49 
0.0881 6.39 
0.1085 4.71 
0.1405 3.46 

0.1165 28.07 
0.1308 13.24 
0.1598 5.29 
0.1949 4.30 
0.2548 4.29 

W 

0.064 
0.111 
0.162 
0.122 
0.098 
0.120 
0.064 

0.064 
0.111 
0.162 
0.122 
0.098 
0.120 
0.087 

0.150 
0.150 
0.150 
0.167 
0.100 

0.167 
0.150 
0.167 
0.145 

0.058 
0.177 
0.170 
0.113 
0.189 

Airflow 
(normal 

a m”s, 

0.060 0.00040 

0.074 
0.057 
0.048 

0.067 
0.059 
0.040 

0.077 
0.063 
0.050 

0.071 
0.065 
0.035 

1 
0.170 
0.135 

0.046 
0.010 

0.056 

0.069 
0.195 

0.151 
0.158 

0.037 
0.140 

TABLE 4. The entrainment coefficients and plume properties at heights midway between 
measurement heights for the Kobus and Topham data  

The statistical average of uL, which is representative of the long-term time average 
of uL, is 

Carrying out the integration results in 

b,  = b( 1 + v 2 / b 2 ) i .  

(5 .5)  

Since the plume width b a t  any height is a monotonically increasing function of values 
of the entrainment coefficient a below this height, plume wandering will result in 
overestimates of a if they are based on long-term time averages. 



Mean $ow in round bubble plumes 37 1 

Let yL be the momentum-flux amplification factor based on the long-term 
time-average measurements U ,  and b,. Then, for the usual case off 4 1, pg 4 pw, 
application of (2.22) gives 

Y L  = Y ( l +  $J (5.9) 

where 1 < e < 2 and e increases with increasing U/[u,( 1 + A 2 ) ] .  Therefore, if a plume 
wanders, the momentum-flux amplification factor is expected to be overestimated 
if i t  is based on measurements of long-term time averages. 

5.2. Considerations of the experiments 

Fazal (1980) measured long-term time averages of momentum flux and gas fraction 
a t  an airflow rate of 0.0023 normal m3/s in the same tank as was later used by Milgram 
& Van Houten (1982). The momentum-flux sensor used was subsequently found to 
undergo random zero shifts, so its data will not be considered here. The calibration 
of the gas-fraction sensor used is uncertain, so the magnitude of the gas fraction will 
not be considered. However, the gas-fraction profile radii, the Abs, can be compared 
with those later found with respect to the instantaneous centreline location to show 
the influence of plume wandering. These radii were determined for use here by fitting 
a Gaussian curve to each of the gas fraction profiles. The lowest height a t  which 
Milgram & Van Houten measured gas fractions a t  an airflow rate of 0.023 normal 
m3/s was 1.58 m. To obtain estimates lower in the plume the value of b from the 
velocity data a t  a height of 0.96 m was multiplied by 0.8 (the estimate of A ) ,  and 
the calculated result a t  0.32 m (zB) was included. Figure 11 shows the results for both 
the long-term time-averaged data and the data with respect to the instantaneous 
centreline location. The radii from the long-term time averages are clearly wider, 
which supports the visual observations of plume wandering in the tank and the need 
to measure the plume properties with respect to the instantaneous centreline 
location. This was done for both the Milgram & Van Houten experiments and for 
the larger-scale Bugg Spring experiments. 

The data of Fannelop and Sjoen, which were in the form of long-term time averages, 
were included here in the primary data set used to determine the relationship between 
plume properties and a and y.  This is only justifiable if those data were not materially 
influenced by plume wandering. A test of this influence was provided by determining 
the relationship between plume properties and a and y with the Fannelop & Sjoen 
data removed from the data set. There was essentially no change in the best 
relationship between plume properties and a. Equation (4.9) still provided the best 
relationship with K = 0.165. The only change was that the constant A changed from 
the value of 7.598 to 7.515. The best relationship between plume properties and y 
was provided by (4.13) with C, = 11 1.3 and C, = 1 .O. A graph of this function is shown 
in figure 9. The relationships between plume properties and a and y are so little 
changed by exclusion of the Fannelop & Sjoen data that i t  is likely these data were 
not materially influenced by plume wandering. 

The evidence concerning the influence of plume wandering on the data of Kobus 
(1968) is mixed. Although these data were not used in determining functional 
relationships between plume properties and a and y ,  values of a and y calculated from 
them are shown in figures 8 and 9. The values o f a  shown in figure 8 for the Kobus 
data are definitely larger than the other data and the functional relationship would 
predict. This indicates a possible influence by plume wandering. However, the values 
of y shown in figure 9 for the Kobus data are not, for the most part, higher than other 
data would predict. Since this indicates a lack of influence by wandering the evidence 
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Gas radius (m) 

FIQURE 11. Gas radius hb vus. height for small-scale plumes : 0 ,  long-term time average measurements 
of Fazal; + , measurements of Milgram & Van Houten relative to instantaneous centreline, @,0.8b  
(from velocity data) for above; 83, 0.8 x calculated value of b a t  zB for above. Best straight-line 
fits to data (minimum mean-square error). 

is mixed and no clear conclusions of the influence of wandering on the Kobus data 
can be drawn. 

The analysis of the Bugg Spring data included determination of the location of the 
plume centre for each of the 60 sets of data points used in the determination of each 
radial profile of vertical velocity. These 60 values of centre location were used for 
experimental determination of cr, the variance of the radial location of the plume 
centre. For each height a t  each gasflow rate the quantity 1 + g 2 / b 2  (see (5.7) and (5.8)) 
was determined. This quantity ranged from 1.004 to 1.092, with an average value 
of 1.040. This indicates that  only a modest amount of plume wandering occurred in 
the Bugg Spring experiments, although even i t  was taken into account by reckoning 
the data with respect to the instantaneous location of the plume centreline. 

6. Application 
By combining the semi-empirically determined functional relations between local 

plume properties and the entrainment coefficient a and the momentum-amplification 
factor y with the plume equations (2.15)-(2.17), numerical solutions can be obtained 
without the need for a priori specification of a and y .  

Previous experiments for determining the speed of single air bubbles in water 
indicate a bubble slip speed of about 0.35 m/s. Since the surface tension of natural 
gas against water is similar to  that of air against water unless the pressure is very 
large, gas-bubble sizes in subsea well blowouts are expected to be similar to air-bubble 
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FIGURE 12. Application of the theory to the experimental conditions of Milgram & Van Houten 
at a gasflow rate of 0.00050 normal m3/s: -, numerical solution from the theory; 0 ,  
experimental value. 

sizes unless the depth is very great. Bishnoi & Maini (1979) determined the downward 
flow speed of water required to  keep natural-gas bubbles stationary in a vertical tube. 
These data suggest a bubble slip speed of about 0.26 m/s, but after they are corrected 
for tube blockage by the bubble the indicated slip speed is about 0.28 m/s. The 
difference in numerical results between cases with ub = 0.35 and ub = 0.28 is slight, 
and 0.35 m/s will be used for the applications here. 

The gas/velocity radius ratio h is expected to increase with increasing values of 
the ratio of plume velocity to  slip velocity U/Ub. For relatively small plumes with 
0.9 < U / u ,  < 2.9 previous measurements show h x 0.8. The solution to  the plume 
equations changes only slightly when A changes from 0.8 to 0.9. Since h is not 
expected to exceed 1.0, use of 0.8 < h < 0.9 is appropriate except for very small and 
slow plumes ( U / U ,  < 0.5). A value of 0.8 will be used here. 

The numerical solution to the plume equations with the formulations described 
above for the experiment of Milgram & Van Houten (1982) at an airflow rate of 
0.00050 normal m3/s is shown in figure 12. The measured values of U ,  b and centreline 
gas fraction are also shown in the figure. The agreement is quite good, but not as 
good as occurs when specific values of 01 and y are chosen to give the best agreement 
between theory and experiment. 

Figure 13 shows the numerical solution for conditions of a subsea well blowout of 
10 normal m3/s of gas a t  a depth of 100 m through a 0.05 m2 opening. Although there 
is no quantitative data for the flow above blowouts, the results are in qualitative 
agreement with what is observed. 
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FIQURE 13. Results of numerical integration of the plume equations for a gasflow rate of 10 
normal m3/s in water that is 100 m deep. 

Applications of the theory presented here are expected to be accurate for 
non-stratified or weakly stratified surroundings ( (  U2/gdp,) dp,/dz < 1 ) .  For highly 
stratified surroundings, McDougall (1978) has shown that a bubble plume will have 
a different form, because the vertical motion of fluid near the periphery of the plume 
is retarded and eventually stopped by its negative buoyancy. 

7. Concluding discussion 
The integral mean-flow plume equations (2.15)-(2.17) using Gaussian radial profiles 

are applicable to bubble plumes over a wide range of scales. There are four parameters 
in the theory: ub, A, a and y .  Two of them, the bubble slip speed ub and the 
gas/velocity radius ratio A,  can be estimated from known information to be 
approximately 0.35 m/s and 0.8 respectively. Since modest changes in values of ub 
or h result in only a small change in the solution to the plume equations, these 
estimates can be quite approximate. Nonetheless, i t  would be of interest to confirm 
in a large-scale experiment the expectation that h approaches 1 .O for large values of 
Ulu ,  whereas it has been found to be approximately 0.8 a t  small scale. 

Semi-empirical functional relationships between local plume properties and the 
entrainment coefficient a: and for the momentum-amplification factor y have been 
determined. When these relationships for a and y and the aforementioned approxi- 
mations for h and ub are combined with the plume equations (2.15)-(2.17), the theory 
takes a closed form that can be applied to any round bubble plume. 

The entrainment coefficient was found to increase wi th  increasing values of the gas 
fraction and with increasing values of a characteristic 1engt)h formed by the 4 power 
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of the plume radius and the $ power of the mean vertical bubble speed, and to decrease 
with increasing values of the distance between bubbles. The combination of these 
effects suggests that the entrainment coefficient is increased by the mixing action of 
the bubbles, which increases the ratio of the r.m.s. turbulent velocity at the 
entrainment interface to the mean centreline velocity. 

The momentum-amplification factor, which is a measure of the portion of the mean 
momentum flux carried by the turbulence, was found to decrease with increasing 
values of the characteristic vertical distance over which buoyancy causes a significant 
change in the momentum flux, and to increase with increasing values of the distance 
between bubbles. These effects are caused by the unsteadiness in the flow associated 
with the passage of the bubbles and their wakes. The more the relative unsteadiness, 
the higher the rnomentum-amplification factor. When there are only a few bubble 
spacings in the characteristic vertical distance the bubble wakes are relatively 
distinct, and therefore they add considerable unsteadiness to the flow. When there 
are many bubble spacings in the characteristic distance, the bubble wakes are more 
merged, so the relative unsteadiness added by the bubbles is less than in the former 
case. 

The smallest-scale laboratory experiments that have taken place have had small 
enough phase distribution factors N ,  for the momentum-flux amplification factor to 
be significantly greater than 1 .O. However, the largest-scale laboratory experiments 
have had large enough phase distribution factors for y to be nearly equal to 1.0. The 
available data show that y is close to 1.0 when N p  exceeds 800, which would nearly 
always be the case for subsea well blowouts. 

Small-scale laboratory tests have had considerably smaller entrainment coefficients 
than are expected for blowouts of gas-containing subsea wells, which result in much 
larger bubble Froude numbers. Available data suggest that the entrainment coefficient 
is relatively constant for bubble Froude numbers in excess of 50. However, very 
large-scale experiments are needed to confirm this. 

Plume wandering was severe enough with a gas-outlet depth of 3.66 m in the 1.65 m 
diameter tank used by Milgram & Van Houten (1982) to necessitate special steps to 
measure data with respect to the instantaneous location of the moving centreline. 
With the exception of the mixed evidence concerning the influence of wandering on 
the data of Kobus (1968), wandering did not significantly influence the results of other 
experiments. It seems most likely that large-amplitude wandering is due to the effects 
of the tank walls when the horizontal extent of the facility is not very large in 
comparison with the plume diameter. These effects may be due to direct interaction 
between the plume and the sidewalls or to interactions involving the return flow in 
the tank. Because of the mixed evidence concerning the effects of wandering on the 
Kobus data, complete Confirmation that large-amplitude wandering requires the 
influence of close sidewalls requires an experiment on small-scale plumes in a tank 
of large horizontal extent. 

This study was supported, in part by the U.S. Department of the Interior under 
contract no. 14-08-001-20460, and in part by the Office of Naval Research under 
contract no. N00014-81-K-0785. 
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